XRayGAN: Consistency-preserving Generation of X-ray Images from Radiology Reports

Xingyi Yang, Nandiraju Gireesh, Eric Xing, Pengtao Xie

Song Wang, Liyan Tang

https://arxiv.org/abs/2006.10552

To train medical students to become qualified radiologists, a large number of X-ray images collected from patients are needed, but due to privacy concerns, such images are typically difficult to obtain.

Hence, we develop methods to generate view-consistent, high-fidelity, high-resolution X-ray images from radiology reports.

Challenges

1. Radiology reports are long and have complicated structure. How to effectively understand the semantics to generate high-fidelity images that accurately reflect the contents of the report?

2. How to generate high-resolution images?

3. From a single report, images with different views (frontal, lateral, etc) need to be generated. How to ensure the consistency of images (e.g., from the same patient)?

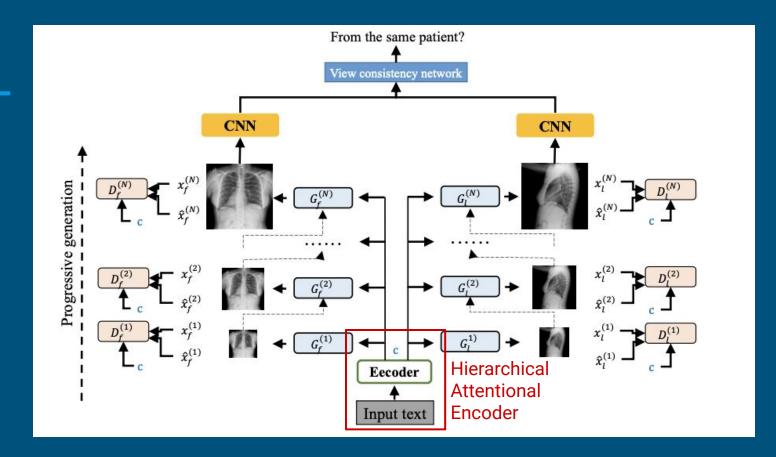
Methods - 1

1. Radiology reports are long and have complicated structure. How to effectively understand the semantics to generate high-fidelity images that accurately reflect the contents of the report?

-> Hierarchical Attentional Encoder (HAE)

2. How to generate high-resolution images?

3. From a single report, images with different views (frontal, lateral, etc) need to be generated. How to ensure the consistency of images (e.g., from the same patient)?



Methods - Hierarchical Attentional Encoder

Takes the radiology reports as inputs, encodes it into an embedding vector that captures the semantics of the report.

Word -> Sequence of words -> Sentence -> Sequence of sentences - > Report Use a hierarchical LSTM network:

- Word-level LSTM: Takes the sequence of words in one sentence as inputs, learns latent embeddings for each word and the sentence.
- Sentence-level LSTM: Takes the embeddings of a sequence of sentences as inputs, learns an embedding of the report.

For a word $w^{(t)}$ at position *t*, its embedding is $c_{word}^{(t)} = W_e w^{(t)}$

* using one hot encoding

* Learnable embedding matrix

For a word $w^{(t)}$ at position t, its embedding is $c_{word}^{(t)} = W_e w^{(t)}$

-> fed into a bi-directional LSTM

For a word $w^{(t)}$ at position t, its embedding is $c_{word}^{(t)} = W_e w^{(t)}$

-> fed into a bi-directional LSTM

-> hidden states $\leftarrow_{h word}^{(t)}$, $\rightarrow_{h word}^{(t)}$ that capture contextual information of $w^{(t)}$.

$$\overrightarrow{h}_{it} = \overrightarrow{\text{GRU}}(x_{it}), t \in [1, T],$$

$$\overleftarrow{h}_{it} = \overleftarrow{\text{GRU}}(x_{it}), t \in [T, 1].$$

Within a sentence, some words (e.g., medical terms) are more important than others.

We use an attentional module to calculate the attention score for each word, and use these attention scores to re-weight the word embeddings we obtained from word-level LSTM.

-> Importance score of word $w^{(t)} : e_{word}^{(t)} = v_w \tanh(W_w h_{word}^{(t)} + b_w)$ * Concatenation of two hidden states (W_w : learnable weight matrix, v_w and b_w : learnable weight vectors)

• (Feed *h* through an one-layer Multi-layer Perceptron)

-> Importance score of word $w^{(t)}$: $e^{(t)}_{word} = v_w \tanh(W_w h^{(t)}_{word} + b_w)$

(W_w : learnable weight matrix, v_w and b_w : learnable weight vectors)

-> Normalize using softmax:
$$\alpha_{word}^{(t)} = \exp\left(e_{word}^{(t)}\right) / \sum_{j=1}^{T} \exp(e_{word}^{(j)})$$

-> Importance score of word $w^{(t)}$: $e_{word}^{(t)} = v_w \tanh(W_w h_{word}^{(t)} + b_w)$

(W_w : learnable weight matrix, v_w and b_w : learnable weight vectors)

-> Normalize using softmax: $lpha_{word}^{(t)} = \exp\left(e_{word}^{(t)}
ight) / \sum_{j=1}^{T} \exp(e_{word}^{(j)})$

-> Representation of the sentence: $c_{sent} = \sum_{j=1}^{T} \alpha_{word}^{(j)} h_{word}^{(j)}$

* weighted sum of words' representations

Methods - Attentional Sentence-level LSTM

Given a sequence of sentences in the report

-> word-level LSTM to obtain an embedding of each sentence

-> feed embeddings of sentences into a sentence-level LSTM

-> an embedding of the report

Methods - Attentional Sentence-level LSTM

-> bi-directional LSTM to capture contextual information

-> calculate importance score of each sentence

-> normalize, and calculate the weighted sum of hidden states

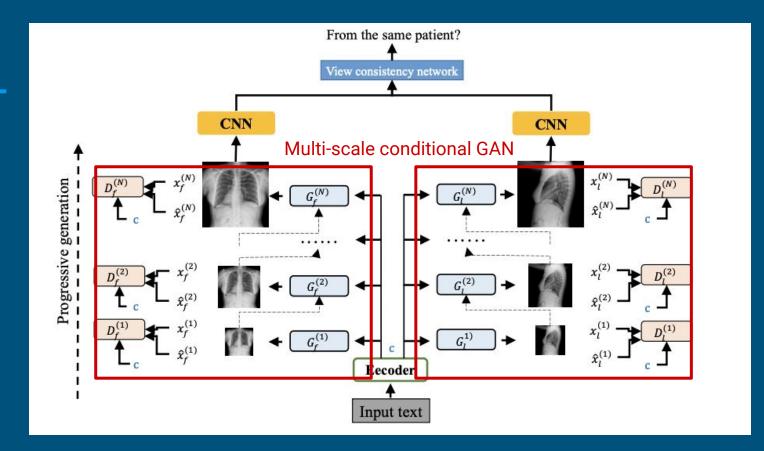
-> representation of the report

Methods - 2

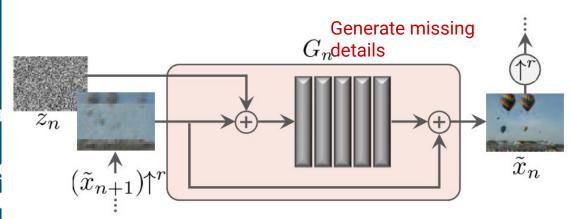
1. Radiology reports are long and have complicated structure. How to effectively understand the semantics to generate high-fidelity images that accurately reflect the contents of the report?

-> Hierarchical Attentional Encoder (HAE)

- 2. How to generate high-resolution images?
 - -> Multi-Scale Conditional GAN
- 3. From a single report, images with different views (frontal, lateral, etc) need to be generated. How to ensure the consistency of images (e.g., from the same patient)?



Methods - Multi-scale conditional GAN



Basic genera

Progressive lower-resolu

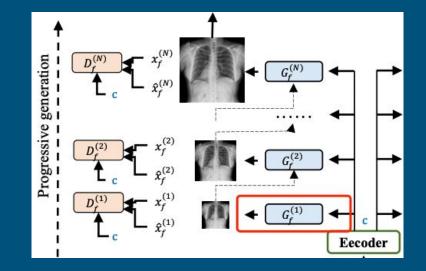
Figure 5: Single scale generation. At each scale n, the image from the previous scale, \tilde{x}_{n+1} , is upsampled and added to the input noise map, z_n . The result is fed into 5 conv layers, whose output is a residual image that is added back to $(\tilde{x}_{n+1})\uparrow^r$. This is the output \tilde{x}_n of G_n .

ogy report.

Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model from a single natural image. https://arxiv.org/pdf/1905.01164.pdf

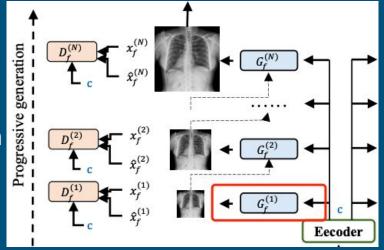
Methods - Basic Generator

Basic generator $G_f^{(1)}$ takes embedding c of the report as input.



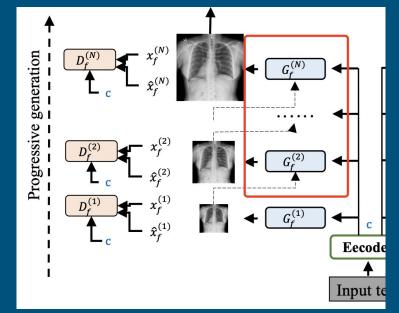
Methods - Basic Generator

asic generator $G_f^{(1)}$ takes embedding c or he report as input. -> Frontal-view $x_f^{(1)}$ with the lowest resolution *32 x 32



Methods – Progressive Generators

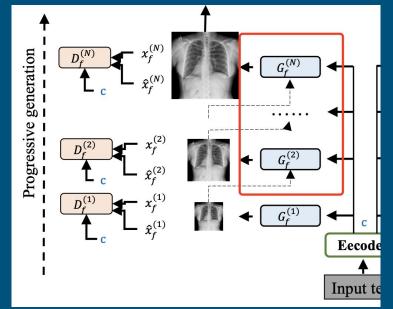
Produce images with increasing resolutions, by a factor of 2. 32 x 32 -> 64 x 64 -> 128 x 128 -> 256 x 256



Methods – Progressive Generators

Produce images with increasing resolutions, by a factor of 2.

The outputs at stage n-1 are the inputs at stage n.



Methods – Progressive Generators

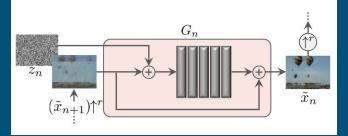
Produce images with increasing resolutions, by a factor of 2.

The outputs at stage n-1 are the inputs at stage n.

$$x_f^{(n)} = \alpha G_f^{(n)} \left(x_f^{(n-1)}, c \right) + (1 - \alpha) U(x_f^{(n-1)})$$

* Generate higher-resolution image containing more fine-grained visual information

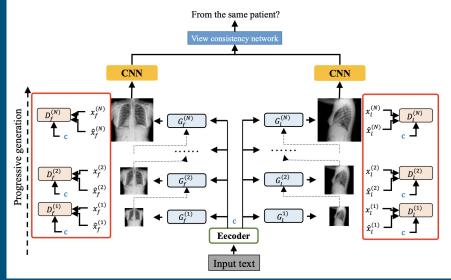
 $U(x_f^{(n-1)})$ is to resize $x_f^{(n-1)}$ to the size of $x_f^{(n)}$. α is the level of blending.



Methods - Discriminators

Similar to GAN*, we use discriminators at each stage to judge whether images are generated or real.

Generators are learned in a way that such a discrimination is difficult to achieve.



*Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model from a single natural image. https://arxiv.org/pdf/1905.01164.pdf

Methods - 3

1. Radiology reports are long and have complicated structure. How to effectively understand the semantics to generate high-fidelity images that accurately reflect the contents of the report?

-> Hierarchical Attentional Encoder (HAE)

2. How to generate high-resolution images?

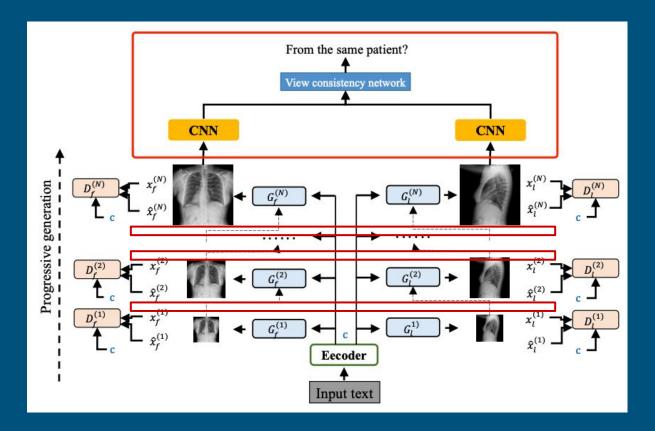
-> Multi-Scale Conditional GAN

- 3. From a single report, images with different views (frontal, lateral, etc) need to be generated. How to ensure the consistency of images (e.g., from the same patient)?
 - -> View Consistency Network

Trained off-line using real X-ray images:

- Consistent: Frontal-view and Lateral-view images belonging to the same patient
- Inconsistent: Frontal-view and Lateral-view images belonging to different patient

The view consistency network is trained offline and its weights are frozen during XRayGAN training.



A modified Resnet-18 $f^{(n)}$ is used to compute image embeddings at stage n.

A modified Resnet-18 $f^{(n)}$ is used to compute image embeddings at stage n.

Calculate embeddings of frontal-view and lateral-view images: $f^{(n)}(x_f^{(n)})$ and $f^{(n)}(x_l^{(n)})$

A modified Resnet-18 $f^{(n)}$ is used to compute image embeddings at stage n.

Calculate embeddings of frontal-view and lateral-view images: $f^{(n)}(x_f^{(n)})$ and $f^{(n)}(x_l^{(n)})$

Probability that they are consistent:

$$\sigma(\sum_{j} w_{j} \left| f_{j}^{(n)} \left(x_{f}^{(n)} \right) - f_{j}^{(n)} \left(x_{l}^{(n)} \right) \right|)$$

(σ : sigmoid function, i: dimensions of embeddings)

Objective Function

Minimize Obj = 1 * adversarial loss + 100 * reconstruction loss + (-1) * view-consistency reward

Adversarial Loss: The generators aim to minimize this loss and the discriminators aim to maximize this loss.

Reconstruction Loss: the pixel-level L2 distance between a generated image and the ground-truth image.

View-consistency Loss: measuring how likely two images are from the same patient

Result - 1

Table 1: Results achi	eved by a	different	methods o	on the tes	t sets of	Open-i a	nd MIMIC	C-CXR.
		Op	en-i		MIMIC-CXR			
Method	IS↑	$FID{\downarrow}$	SSIM ↑	$VC\uparrow$	IS↑	$FID{\downarrow}$	SSIM ↑	$VC\uparrow$
Real	-		-	0.669	-	-		0.589
GAN-INT-CLS [15]	1.015	272.7	0.201	0.525	1.039	214.3	0.291	0.555
StackGAN [16]	1.043	243.4	0.138	0.487	1.063	245.5	0.212	0.471
AttnGAN [17]	1.055	226.6	0.171	0.508	1.067	232.7	0.231	0.487
XRayGAN	1.081	141.5	0.343	0.627	1.112	86.15	0.379	0.580

XRayGAN achieves better performance than the three baselines.

Result - 2

	Open-i							
Method	IS↑	FID↓	SSIM↑	VC↑				
Real	-	-	-	0.669				
w/o VCN	1.079	147.4	0.353	0.623				
w/o MSCGAN	1.022	235.5	0.164	0.605				
w/o HAE	1.079	153.2	0.300	0.621				
Full	1.081	141.5	0.343	0.627				

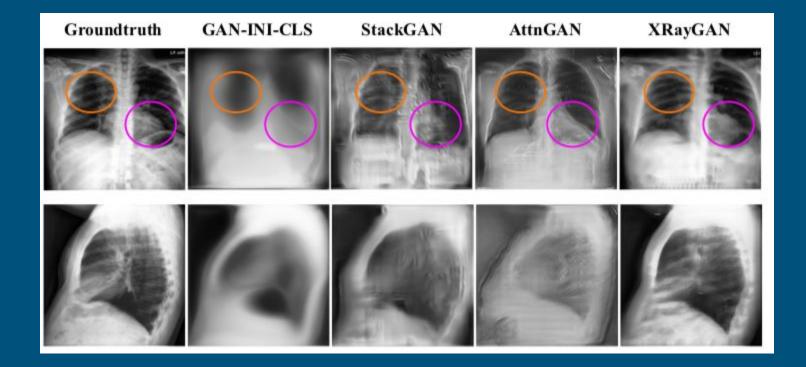
VC: View Consistency

1. VCN explicitly encourages the generators to generate consistent frontal and lateral images.

2. MSCGAN is essential in generating high-resolution and high-fidelity images.

3. Using hierarchical LSTM to capture the linguistic hierarchy in the report can better understand the report, which further makes the generated images have better fidelity.

Result - 3



1. The images generated by XRayGAN are clear and visually very similar to the groundtruth.

- a. VCN encourage the lateral image to be as clear as the frontal image.
- b. It generates better frontal-view image since it uses multi-scale progressive GANs to improve the resolution of generated images.

2. The images generated by XRayGAN correctly reflect the clinical findings in the reports.

Summary and takeaways

- 1. A hierarchical attentional encoder is used to capture the hierarchical linguistic structure and various clinical importance of words and sentences
- 2. A multi-scale conditional GAN (MSCGAN) is used to generate high-resolution X-ray images in a progressive manner.
- 3. Proposed an XRayGAN where a view consistency network (VCN) is used to encourage the generated frontal-view and lateral-view images to be from the same patient.

Questions?